
Sharing Features in Multi-class Boosting via Group Sparsity

Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel
The Australian Centre for Visual Technologies and School of Computer Science

The University of Adelaide, Australia

Abstract

We present a novel formulation of fully corrective boost-
ing for multi-class classification problems with the aware-
ness of sharing features. Our multi-class boosting is solved
in a single optimization problem. In order to share features
across different classes, we introduce the mixed-norm reg-
ularization, which promotes group sparsity, into boosting.
We then derive the Lagrange dual problems which enable
us to design fully corrective multi-class algorithms using
the primal-dual optimization technique. We show that shar-
ing features across classes can improve classification per-
formance and efficiency. We empirically show that in many
cases, the proposed multi-class boosting generalizes bet-
ter than a range of competing multi-class boosting algor-
ithms due to the capability of feature sharing. Experimental
results on machine learning data, visual scene and object
recognition demonstrate the efficiency and effectiveness of
proposed algorithms and validate our theoretical findings.

1. Introduction
A significant proportion of the most important clas-

sification problems inherently exhibit a large number of
classes. These problems demand effective and efficient
multi-class classification techniques. Unlike binary clas-
sification, which has been well researched, multi-class
classification has received relatively little attention due to
the inherent complexity of the problem. Some important
steps have been taken towards addressing the problem (see
[8,16,28] for instance), but the primary approach taken thus
far has exploited large numbers of independent binary clas-
sifiers. An example of this approach is the extension of a bi-
nary classification algorithm to the multi-class case by con-
sidering the problem as a bunch of one-vs-all binary clas-
sification problem. The disadvantage of this approach is
that the final ensemble classifier is often made up of a large
number of weak classifiers which inevitably leads to long
evaluation times.

We propose here a novel formulation of the fully cor-
rective boosting for multi-class classification problems with

the awareness of feature sharing1. Boosting is an ensem-
ble classifier learning technique. It combines a set of weak
classifiers, which are generated by a base learning oracle, in
order to form a strong classifier. Recently, boosting has at-
tracted much research interest in the machine learning and
pattern recognition community due to its robustness and ef-
ficiency [12]. The key intuition behind our work is that
informative features are commonly shared between various
classes. For example, traffic warning signs have a common
triangular shape with various symbols inside. These basic
shared features can be used to help differentiate warning
signs from other objects while the symbols inside can be
used to differentiate different warning signs. In this work,
we aim to select a common subset of features which are in-
formative in identifying a wide range of classes for a multi-
class problem.

Main contributions 1) We propose a new formula-
tion for multi-class boosting that promotes feature sharing
across classes by enforcing group sparsity regularization
(referred to as MultiBoost group). Group sparsity regular-
ization can be extremely useful in problems where there ex-
ist a structure over sample features, e.g., feature sharing,
and when features are expensive to compute. We empiri-
cally show that by enforcing group sparsity, the proposed
multi-class boosting converges faster while achieving better
or comparable generalization performance. The fact that the
algorithm converges fast means that fewer features are re-
quired for a given classification accuracy and there is a sig-
nificant improvement in run-time performance. Our deriva-
tion for designing multi-class boosting methods is applica-
ble to general `p,q (p, q ≥ 1) mixed-norms. We also pro-
pose the use of the alternating direction method of multipli-
ers (ADMM) [4] to efficiently solve the involved optimiza-
tion problems, which is much faster than using standard
interior-point solvers such as MOSEK [1]. To our knowl-
edge, this is the first fully-corrective multi-class boosting
approach that promotes feature sharing using group spar-
sity regularization. 2) We propose a new family of multi-

1We use “features” and “weak classifiers” interchangeably when the
weak classifier is a decision stump because a decision stump is trained on
a single feature of the input data.

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 2128

class boosting algorithms based on a simplified formulation.
This formulation not only enables us to share features and
encourages structural sparsity in the learning procedure of
multi-class boosting, but also allows us to take advantage
of parallelism in ADMM to speed up the training time by a
factor proportional to the number of classes k. The training
time required is thus similar to that required to train multiple
independent binary classifiers in parallel. The proposed for-
mulation converges significantly faster, however, by virtue
of the fact that features may be shared between classes, thus
exploiting group sparsity.

Related work Boosting is a well-known technique com-
monly applied to improve the accuracy of a learning pro-
cedure. The algorithm forms an ensemble classifier from
a weighted combination of weak, or base, learners. The
final boosted strong classifier is capable of achieving high
classification accuracy. Boosting was originally proposed
for binary classification [13]. It has then been extended to
multi-class problems [2,14,22]. Multi-class boosting can be
achieved through an ensemble of 1) multi-class weak learn-
ers [14,30] or 2) binary weak learners [2,22]. In the former,
the weak learner is required to produce a multi-class out-
put, while in the latter, the weak learner is only required to
product a binary output. Here we focus on the latter. The
advantage of forming an ensemble using binary weak clas-
sifiers is that the binary classification problem has been well
studied and many effective algorithms have been designed
for binary problems. Moreover, binary weak learners are of-
ten much simpler and more efficient than multi-class weak
learners. As a result, they are often faster to train and have a
better generalization ability (less likely to over-fit the train-
ing data).

One well-known approach to build a multi-class classi-
fier is to use a coding matrix to reduce the output space
of a multi-class problem into that of several binary prob-
lems. Some examples of such strategies include one-vs-all
[21], one-vs-one (round robin classification) [15] and error-
correcting output coding [8, 10]. Multi-class boosting alg-
orithms exploiting these strategies include AdaBoost.MH,
AdaBoost.MO, AdaBoost.OC, AdaBoost.ECC, among nu-
merous others. Unfortunately, all of these algorithms fail
to consider similarity between classes, especially the fea-
ture sharing property. Since binary classifiers are trained
independently, the resulting strong classifier can be highly
unbalanced and often dependent on an excessive number of
features/weak classifiers.

Several work has been introduced to address the feature
sharing problem in multi-class boosting learning. Joint-
Boost, proposed by Torralba et al. [26], finds common
features that can be shared across classes using heuristics.
Weak learners are then trained jointly using standard boost-
ing. Zhang et al. proposed to train multi-class boosting with
sharable information patterns [29]. As a pre-processing

step, they generate sharable patterns using data mining tech-
niques and then learn a multi-class boosting on these pat-
terns. So the finding of sharable features and multi-boost
training are de-coupled.

In comparison to JointBoost and Zhang et al.’s work, we
select weak learners systematically on the basis of struc-
tural sparsity. A related approach is a multi-class boosting
of Duchi and Singer [11] known as GradBoost, which has
also used mixed-norm for group sparsity. The main differ-
ence is that GradBoost of [11] does not directly optimize the
boosting objective function. Instead, the algorithm updates
a block of variables for optimizing a quadratic surrogate
function, in a fashion similar to gradient-based coordinate
descent. It is not clear how well the surrogate approximates
the original objective function. Since the mixed-norm reg-
ularization is not directly optimized either, there the group
sparsity is achieved heuristically by a combination of for-
ward selection and backward elimination. Our work funda-
mentally differs [11] in that we directly optimize the group
sparsity regularized objective by following the column gen-
eration based boosting [23] and no heuristics is involved in
the optimization. Shen and Hao [23] introduced a direct for-
mulation for multi-class boosting. But feature sharing is not
considered in their work. The work of [23] can be seen as
an extension of the column generation boosting framework
of [24] to multi-class. Here we design our feature-sharing
multi-class boosting in a direct formulation as well, but with
more sophisticated group sparsity regularization. Note that
the general boosting framework of [23, 24] is not directly
applicable in our problem setting.

Notation Let (xi, yi)
m
i=1 be the set of training data,

where xi ∈ RD represents an training example, and yi ∈
{1, 2, · · · , k} the corresponding class label. We have m
training samples and k classes. Let h(·) be a weak classifier
which projects an input vector x into {−1,+1} (here we
consider only binary classifiers although the proposed ap-
proach can be applied to any real-valued weak classifiers).
We define the matrix H ∈ Zm×n, which is made up of the
binary outputs of the weak classifiers when applied to the
training samples. So the (i, j) entry of H , Hij = hj(xi), is
the label predicted by weak classifier hj(·) for the datumxi.
Each columnH:j of the matrixH thus represents the output
of a single weak classifier hj(·), and each rowHi: the output
of all weak classifiers when applied to a single training da-
tum xi. In this work, we aim to learn a linear ensemble clas-
sifier

∑n
j=1 wjhj(·) for each class. Here w1, w2, · · · , wn

are the coefficients of the linear classifier. Since we have
k classes, we define the matrix W = [w1,w2, · · · ,wk] ∈
Rn×k such that each column of W , wr, contains coeffi-
cients of the linear classifier for class r and each row of W ,
Wj:, consists of the coefficients for the weak classifier hj(·)
for all class labels. The `1,2 norm of a matrix is defined as
‖W‖1,2 =

∑
j ‖Wj:‖2 with ‖·‖2 being the `2 norm. The fi-

2129

nal strong classifier is a weighted average of multiple weak
classifiers, and the estimated classification for a test datum
x is F (x) = argmax

`

∑n
j=1Wj`hj(x).

2. Multi-class boosting with group sparsity
In this section we formulate the multi-class boosting al-

gorithm using mixed norm regularization, and a variety of
loss criteria. The fact that the classifier is based on pair-
wise comparisons between classes means that the response
of the linear classifiers corresponding to the correct label
must be larger than that of the linear classifiers representing
other labels. Let Fyi(·) be the response of the linear classi-
fier corresponding to yi (the true class label) when applied
to training instance xi. The multi-class margins for the in-
stance xi thus can be defined as Fyi(xi)−Fr(xi),∀r 6= yi.

Multi-class hinge loss In order to maximize the mar-
gin using the hinge loss, the following conditions are en-
couraged to be satisfied, Fyi(xi) ≥ 1 + Fr(xi),∀r 6= yi.
The condition states that the confidence of the correct label
should be larger than the confidence of other labels by at
least one unit. By introducing the indication operator, δs,t,
such that δs,t = 1 if s = t and δs,t = 0 otherwise, the above
equation can be simplified as

δr,yi + Fyi(xi) ≥ 1 + Fr(xi), r = 1, 2, · · · , k.
Given training samples, our goal is to minimize the multi-
class hinge loss with `1,2 mixed-norm regularization. The
primal problem can be written as

min
W,ξ

m∑
i=1

ξi + ν‖W‖1,2 (1)

s.t. δr,yi +Hi:wyi ≥ 1 +Hi:wr − ξi,∀i, r;
W ≥ 0; ξ ≥ 0.

Here ν > 0 is the regularization parameter. We rewrite (1)
by introducing an auxiliary variable V :

min
W,V,ξ

m∑
i=1

ξi + ν‖V ‖1,2 (2)

s.t. δr,yi +Hi:wyi ≥ 1 +Hi:wr − ξi,∀i, r
V =W ;W ≥ 0; ξ ≥ 0.

This auxiliary variable V splits the regularization term from
the classification loss, and plays a critical role in deriving
the meaningful dual problem. Actually ξ ≥ 0 is automati-
cally satisfied since the constraint, corresponding to the case
r = yi, ensures the non-negativeness of ξ. We derive its La-
grange dual, as in LPBoost [9]. The Lagrangian can then be
written as

L =

m∑
i=1

ξi + ν‖V ‖1,2 −
∑
i,r

Uir(δr,yi +Hi:wyi − 1

−Hi:wr + ξi)− 〈Q, νW − νV 〉 − 〈P,W 〉 ,
where W , V and ξ are primal variables and U , P and Q are

dual variables (with U ≥ 0 and P ≥ 0). At optimum, the
first derivative of the Lagrangian w.r.t. the primal variables,
ξ, must vanish, ∂L/∂ξi = 0 →

∑
rUir = 1,∀i. The first

derivative w.r.t. each column of W must also be zeros:
∂L

∂wr
= 0 (3)

→
∑
i

UirHi: −
∑
i,r=yi

[∑
lUil

]
︸ ︷︷ ︸

=1

Hi: = P:r − νQ:r

→
∑
iUirHi: −

∑
iδr,yiHi: ≥ −νQ:r.

The infimum over the primal variables V can be expressed
as

inf
V
L = inf

V
−ν 〈Q,V 〉+ ν‖V ‖1,2 (4)

= −ν
∑
j

[
sup
Vj:

Q>j:Vj: − ‖Vj:‖2
]

= −ν
∑
j

{
0 if ‖Qj:‖2 ≤ 1, ∀j,
∞ otherwise.

Note that we use the fact that the convex conjugate of ‖Vj:‖2
is the indicator function of the dual norm unit ball [5].
Hence the Lagrange dual can be written as

min
U,Q

∑
i,r

Uirδr,yi (5)

s.t.
∑
i(δr,yi − Uir)Hi: ≤ νQ:r,∀r;∑
rUir = 1,∀i; U ≥ 0; ‖Qj:‖2 ≤ 1,∀j.

Since there can be infinitely many constraints, we need to
use column generation to solve (5) [9]. The subproblem for
generating weak classifiers is

h∗(·) = argmax
h(·)∈H,r

∑m
i=1(δr,yi − Uir)h(xi). (6)

h∗(·) is the one that most violates the first constraint in the
dual (5). The idea of column generation is that instead of
solving the original problem with prohibitively large num-
ber of constraints, we consider instead a small subset of en-
tire variable sets. The algorithm begins by finding a variable
that most violates the dual constraints, i.e., the solution to
(6), which corresponds inserting a primal variable into (1)
or (2). The process continues as long as there exists at least
one constraint that is violated for (5). The algorithm termi-
nates when we cannot find such a violated constraint. As
in AdaBoost, the matrix U ∈ Rm×k plays the role of mea-
suring the importance of the training samples. The weak
classifier which maximizes (6) is selected in each iteration.
Similarly, the `1,∞-norm regularized primal can be written
as

min
W,V,ξ

m∑
i=1

ξi + ν‖V ‖1,∞ (7)

s.t. δr,yi +Hi:wyi ≥ 1 +Hi:wr − ξi,∀i, r
V =W ;W ≥ 0; ξ ≥ 0.

2130

Its corresponding dual is

min
U,Q

∑
i,r

Uirδr,yi (8)

s.t.
∑
i(δr,yi − Uir)Hij ≤ νQ:r,∀r;∑
rUir = 1,∀i;U ≥ 0; ‖Qj:‖1 ≤ 1,∀j.

From the dual problem we see that the only difference be-
tween `1,2-norms and `1,∞-norms is in the norm of the last
constraint. This is not surprising since `p norm in primal
corresponds to `q norm in dual with 1/p+ 1/q = 1.

Multi-class logistic loss We can also design a boosting
algorithm for optimizing the logistic loss function:

1

mk

m∑
i=1

k∑
r=1

log
(
1 + exp (Hi:wr −Hi:wyi)

)
. (9)

As in the previous derivation, we put the above logistic loss
in an `1,2 regularization framework. The learning problem
can then be expressed as,

min
W,V,ρ

1

mk

m∑
i=1

k∑
r=1

log
(
1 + exp (−ρir)

)
+ ν‖V ‖1,2 (10)

s.t. ρir = Hi:wyi −Hi:wr,∀i,∀r,
V =W ;W ≥ 0.

Here we introduce the auxiliary variables, ρ, and additional
constraints, V = W , to obtain the meaningful dual for-
mulation. The Lagrange dual can be written as (see the
supplementary for details):

max
U,Q

− 1

mk

m∑
i=1

k∑
r=1

[
mkUir log (mkUir)+ (11)

(1−mkUir) log (1−mkUir)
]

s.t.
∑
i

[
δr,yi (

∑
l Uil)− Uir

]
Hi: ≤ νQ:r,∀r;

‖Qj:‖2 ≤ 1, ∀j.
Through the Karush-Kunh-Tucker (KKT) optimality condi-
tion, the gradient of Lagrangian over primal variables ρ and
dual variables U must vanish at the optimum. The solutions
of (10) and (11) coincide since both problems are feasible
and satisfy Slater’s condition. One can find the solution by
solving either problem. The relationship between the opti-
mal values of ρ and U can be expressed as

Uir =
exp(−ρir)

mk
(
1 + exp(−ρir)

) . (12)

As was the case for the hinge loss, the dual of the `1,∞-norm
regularized logistic loss can be written as

max
U,Q

− 1

mk

m∑
i=1

k∑
r=1

[
mkUir log (mkUir)+ (13)

(1−mkUir) log (1−mkUir)
]

s.t.
∑
i

[
δr,yi (

∑
l Uil)− Uir

]
Hi: ≤ νQ:r,∀r;

Algorithm 1 MultiBoost with shared weak classifiers via
group sparsity.

Input:
1) A set of examples {xi, yi}, i = 1 · · ·m; 2) The maximum number of
weak classifiers, T ;
Output: A multi-class classifier F (x) = argmax

r

∑T
j=1Wjrhj(x);

Initilaize:
1) t← 0; 2) Initialize sample weights, Uir = 1/(mk);
while t < T do1

1) Train a weak learner, ht(·) =2
argmax
h(·),r

∑m
i=1

[
δr,yi − Uir

]
h(xi), hinge loss

argmax
h(·),r

∑m
i=1

[
δr,yi

(∑
l Uil

)
− Uir

]
h(xi), logistic

∀r, ∀h(·) ∈ H;
2) If the stopping criterion has been met, we exit the loop.3

if
∥∥∥∑m

i=1

[
δr,yi − Uir

]
h(xi)

∥∥∥
2
< ν + ε then4

break; (hinge loss)5

if
∥∥∥∑m

i=1

[
δr,yi

(∑
l Uil

)
− Uir

]
h(xi)

∥∥∥
2
< ν + ε then6

break; (logistic loss)7

3) Add the best weak learner, ht(·), into the current set;8
4) Solve either the primal or the dual problem (we solve the dual (5)) for9
the hinge loss case; or solve the primal problem (10) using ADMM for
the logistic loss case;
5) Update sample weights (dual variables);10
6) t← t+ 1;11

‖Qj:‖1 ≤ 1, ∀j.
The details of our boosting algorithm are given in Algo-
rithm 1.

Implementation Note that the dual problem of hinge
loss, (5), is a conic quadratic optimization problem involv-
ing several linear constraints and quadratic cones. We use
the Mosek optimization solver to solve (5) which provides
solutions for both primal and dual problems simultaneously
using the interior-point method. For the logistic loss formu-
lation the primal problem has nk variables and mk simple
constraints (10). The dual problem has mk variables2 and
nk constraints. In boosting, we often have more training
samples than final weak classifiers (m � n). However,
the `1,2-norm is not differentiable everywhere, and thus to
solve (10) we apply the ADMM method [4]. ADMM decou-
ples the regularization term from the logistic loss by intro-
ducing additional auxiliary variables. The algorithm then
solves (10) by using an alternating minimization approach.
A brief summary of ADMM in provided in Algorithm 2. See
the supplementary for details of using ADMM to solve our
mixed-norm regularization problems.

2.1. Faster training of multi-class boosting

In the last section, although we have combined ADMM
with L-BFGS-B for faster training of multi-class logistic
loss, the resulting algorithm is still computationally expen-
sive to train. The drawback of (10) is that the formulation
cannot be separated for faster training. Since real-world

2Here we ignore the equality constraints since they can be put back into
the original cost function.

2131

Algorithm 2 ADMM for solving (10)
Input:
1) Outputs of weak classifiers,H; 2) Augmented Lagrangian parameter, λ;
3) The maximum number of iterations, smax;
Output: An optimalW∗;
Initilaize: 1) s← 0; 2)W 0, Z0, U0;
repeat1

W s+1 = argmin
W

1
mk

∑m
i=1

∑k
r=1 log

(
1 + exp (−ρir)

)
+2

(Us)>W + λ
2 ‖W − Z

s‖22;3
Zs+1
j: = Sλ/ρ(W

s+1
j: + Usj:), ∀j4

where Sκ(a) = (1− κ/‖a‖2)+a;5
Us+1 = Us + λ(W s+1 − Zs+1);6
s← s+ 1;7
if s > smax then8

break;9

until convergence ;10

data often consists of a large number of samples and classes,
the training procedure can be very slow.

In order to improve the training efficiency of the clas-
sifier we thus propose here another variation of the multi-
class boosting based on the logistic loss. This variation is
achieved through a simplification of the form of ρir in (10)
to ρir = yirHi:wr where yir = 1 if yi = r and yir = −1,
otherwise. Note that this formulation was originally intro-
duced in [7] for multi-class as well as multi-label support
vector machine (SVM) learning and proved to be effective.
To our knowledge, this formulation of multi-class loss func-
tion has not been applied to boosting. Here we extend it to
multi-class boosting. The fast training (FAST) formulation
is:

min
W,ρ

1

mk

m∑
i=1

k∑
r=1

log
(
1 + exp (−ρir)

)
+ ν‖W‖1,2 (14)

s.t. ρir = yirHi:wr,∀i,∀r; W ≥ 0.

The Lagrange dual can be written as

max
U
− 1

mk

m∑
i=1

k∑
r=1

[
mkUir log (mkUir)+ (15)

(1−mkUir) log (1−mkUir)
]

s.t.
∑
iUiryirHi: ≤ νQ:r,∀r; ‖Qj:‖2 ≤ 1,∀j.

The relationship between ρ and Uir is the same as (12). We
replace steps 1 and 2 in Algorithm 1 with the constraint in
(15) and step 4 in Algorithm 1 with the optimization prob-
lem in (14). As in [7], it is easy to apply the above formu-
lation to multi-label classification, where each example can
have multiple class labels. We leave this for future work.

Parallel optimization for FAST boosting The bottle-
neck of Algorithm 2 lies in minimizing W s+1. By sim-
plifying the margin as ρir = yirHi:wr, we can solve each
wr,∀r independently. This speeds up our training time by
a factor proportional to the number of classes. Let us define
W = [w1,w2, · · · ,wk] ∈ Rn×k, Z = [z1, z2, · · · , zk] ∈
Rn×k and U = [u1,u2, · · · ,uk] ∈ Rn×k, line 2 in Algo-

rithm 2 can simply be replaced by,

ws+1
r =argmin

w

1

mk

m∑
i=1

log
(
1 + exp (−ρir)

)
+ (16)

(usr)
>w +

λ

2
‖w − zsr‖22, ∀r.

Even without a multi-core processor, solving a series of (16)
is still faster than solving line 2 in Algorithm 2. Distributed
optimization can also be applied to our algorithms to further
speed up the training time. The idea is to distribute a subset
of training data in (16) to each processor and gather optimal
ws+1
r to form the average. Interested readers should refer

to Chapter 8 in [4].

3. Experiments
In order to ensure a fair comparison we evaluate the per-

formance of the proposed algorithms against other multi-
class algorithms using binary weak learners: AdaBoost.MH
[21], AdaBoost.ECC [16], MultiBoost `1 [23], AdaBoost-
SIP [29], JointBoost [26], GradBoost (`1/`2-regularized)
[11]. Note that the last three also try to share features across
classes. For AdaBoost.ECC, we use the random-half parti-
tioning technique, where we randomly assign half of the
classes to be positive [18]. Decision stumps are chosen as
the weak classifier for all boosting algorithms due to their
simplicity and efficiency. For our algorithm, we mainly use
the `1,2 regularization since `1,∞ delivers similar perfor-
mance.

Artificial data We consider the problem of discriminat-
ing 6 object classes on a 2D plane. Each sample consists of
2 measurements: orientation and radius. For all classes, the
orientation is drawn uniformly between 0 and 2π. The ra-
dius of the first group is drawn uniformly between 0 and 1,
the radius of the second group between 1 and 2, and so on.
We generate 50 samples in the first group, 100 samples in
the second group, 150 samples in the third group, and so on.
The number of training sets is the same as the number of test
sets. In this example feature vectors are the vertical and hor-
izontal coordinates of the samples. We train 5 different clas-
sifiers based on the proposed MultiBoost group (hinge loss),
AdaBoost.MH [21], AdaBoost.ECC [16], JointBoost [26]
and MultiBoost `1 [23]. The multi-class classifier is com-
posed of a set of binary decision stumps. For our algorithm
and MultiBoost `1 , we choose the regularization parameter
ν from {10−5, 10−4, 10−3, 10−2, 10−1}. For JointBoost,
we set the outermost class (maximal radius) as background.
We evaluate 5 boosting algorithms on this toy data and
plot the decision boundary in Fig. 1. Table 1 reports some
training and test error rates. Our algorithm performs best
amongst five evaluated classifiers. We conjecture that the
poor performance of JointBoost is due to the small number
of background samples in the training data. JointBoost was
designed for the task of multi-class object detection where

2132

feat. Ada.ECC [16] Ada.MH [21] Joint [26] Multi [23] Ours
20 0.62/0.68 0.48/0.53 0.71/0.71 0.10/0.14 0.10/0.14
100 0.23/0.33 0.17/0.24 0.44/0.50 0.05/0.13 0.03/0.10
500 0.08/0.20 0.09/0.18 0.24/0.38 0.03/0.10 0.02/0.09

Table 1: Training/test errors of a few multi-class boosting methods on the 2D toy
data set. The proposed MultiBoost group with hinge loss performs slightly better
than others. See Fig. 1 for an illustration.

the objective is to detect several classes of objects from
background samples. The algorithm might not work well
on general multi-class problems. We then repeat our ex-
periment by increasing the number of iterations to 500, and
JointBoost, Adaboost.MH and AdaBoost.ECC still perform
poorly on this toy data set compared to our approach.

UCI data sets The second experiment is carried out on
some UCI machine learning data sets. Since we are more in-
terested in the performance of multi-class algorithms when
the number of classes is large, we evaluate our algorithm
on ‘segment’ (7 classes), ‘USPS’ (10 classes), ‘pendigits’
(10 classes), ‘vowel’ (11 classes) and ‘isolet’ (26 classes).
All data instances from ‘segment’ and ‘vowel’ are used in
our experiment. For USPS, pendigits and isolet we ran-
domly select 100 samples from each class. We use the orig-
inal attributes for USPS (256 attributes) and isolet (617 at-
tributes). For the rest, we increase the number of attributes
by multiplying pairs of attributes. Each data set is then
randomly split into two groups: 75% samples for training
and 25% for evaluation. In this experiment, we compare
MultiBoost group (logistic loss) to AdaBoost.MH [21], Ad-
aBoost.ECC [16], GradBoost (`1/`2-regularized) [11] and
MultiBoost `1 [23]. The regularization parameter is first de-
termined by 5-fold cross validation.

For GradBoost, we choose the regularization parameter
from {10−4, 5·10−4, 10−3, 5·10−3, 10−2, 5·10−2, 10−1, 5·
10−1}. For MultiBoost `1 and our algorithm, we choose
the regularization parameter from {10−7, 5 · 10−7, 10−6, 5 ·
10−6, 10−5, 5·10−5, 10−4, 5·10−4, 10−3}. All experiments
are repeated 10 times using the same regularization param-
eter. The maximum number of boosting iterations is set to
500. We observe that almost all the algorithms converge
earlier than 500 in this experiment. We plot the mean of test
errors versus proportion of features used in Fig. 2. These re-
sults show that our proposed approach consistently outper-
forms its competitors. On the ‘segment’ and ‘vowel’ data
sets we observe that our algorithm performs similarly to
MultiBoost `1 . We suspect that this is because the number
of attributes in both data sets is quite small, and thus that
there is little advantage to be gained through feature shar-
ing on these data sets. Our approach often has the fastest
convergence rate (note, however, that GradBoost converges
faster on the USPS data sets but ends up with a larger test
error).

Comparison between GradBoost and our algorithm
GradBoost with mixed-norm regularization [11] is similar
to the method presented here. The distinction, however, is
that our method minimizes the original convex loss func-

MNIST ABCDETC
Ada.MH [21] 3.0 (0.2) 63.4 (1.8)

Ada.ECC [16] 3.1 (0.2) 70.5 (1.1)
Ada.SIP [29] 4.4 (1.3) 62.7 (1.2)

GradBoost [11] 5.3 (0.3) 73.9 (1.3)
MultiBoost [23] 3.7 (0.2) 73.2 (0.7)

MultiBoost group(ours) 3.1 (0.2) 59.1 (1.1)
MultiBoostgroupFAST (ours) 3.0 (0.3) 58.2 (0.9)

Table 2: Test errors (%) of a few multi-class boosting methods on the MNIST and
ABCDETC handwritten data sets. All experiments are run 10 times with 500 boost-
ing iterations. The average error mean and standard deviation (in percentage) are
reported.

tion rather than quadratic bounds on this function. The re-
sult is that our method is not only more effective, but also
more general, as it can be applied not only to the logistic
loss function but also to any convex loss function. In addi-
tion, our approach shares a similar formulation to standard
boosting algorithms, i.e., the way we generate weak learners
or update sample weights (dual variables in our algorithm).
The algorithm of [11] is rather heuristic and it is not known
when the algorithm will converge. Furthermore, GradBoost
is more similar to FloatBoost [19] where the authors intro-
duce a backward pruning step to remove less discrimina-
tive weak classifiers. The drawback of pruning is 1) being
heuristic and 2) a prolonged training process.

ABCDETC and MNIST handwritten data The NEC
Lab ABCDETC sets consist of 72 classes (digits, letters and
symbols). For this experiment, we only use digits and let-
ters (10 digits, 26 lower cases and 26 upper cases). We first
resize the original images to a resolution of 28 × 28 pix-
els and apply a de-skew pre-processing. We then apply a
spatial pyramid and extract 3 levels of HOG features with
50% block overlap. The block size in each level is 4 × 4,
7× 7 and 14× 14 pixels, respectively. Extracted HOG fea-
tures from all levels are concatenated. In total, there are
2, 172 HOG features. For ABCDETC, we randomly select
5 samples from each class as training sets and 120 samples
from each class as test sets. For MNIST, we randomly se-
lect 100 samples from each class as training sets and used
the original test sets of 10, 000 samples. In this experi-
ment, we also compare the performance of MultiBoost group

with a fast training variant, MultiBoostgroupFAST . All exper-
iments are run 10 times with 500 boosting iterations and
the results are briefly summarized in Table 2. From the
table, both MultiBoost group and MultiBoostgroupFAST perform
best compared to other evaluated algorithms, especially on
ABCDETC test sets where the number of classes is large.
We observe the FAST approach to perform slightly better
than MultiBoost group. In our work, the advantage of the
FAST approach compared to MultiBoost group is that the
training time can be further reduced by exploiting paral-
lelism in ADMM, as previously mentioned. Table 3 il-
lustrates the feature sharing property of our algorithms.
Clearly we can see that the group sparsity regularization in-
deed encourages sharing features.

Scene recognition In the next experiment, we compare

2133

AdaBoost.ECC AdaBoost.MH JointBoost [26] MultiBoost`1 [23] MultiBoost group

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 1: Decision boundaries on a toy data sets, with Top row: 100 weak classifiers and Bottom row: 500 weak classifiers. Note that some multi-class algorithms end up with
very complicated and multi-modal decision boundaries.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Proportion of used features

T
e
s
t
E

rr
o
r

SEGMENT (7 classes)

 Ada.ECC
 Ada.MH
 GradBoost
 MBoost L1

 MBoost Group

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.08

0.09

0.1

0.11

0.12

0.13

0.14

USPS (10 classes)

Proportion of used features

T
e

s
t

E
rr

o
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PENDIGITS (10 classes)

Proportion of used features

T
e
s
t
E

rr
o
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

VOWEL (11 classes)

Proportion of used features

T
e
s
t
E

rr
o
r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.05

0.1

0.15

0.2

0.25

0.3

ISOLET (26 classes)

Proportion of used features

T
e

s
t

E
rr

o
r

Figure 2: The performance of our algorithm (MultiBoost group) compared with various boosting algorithms on several machine learning data sets. The horizontal axis is the
fraction of used features and the vertical axis is the test error rate. We observe that group sparsity-based approaches (ours and GradBoost) generally converge faster than other
algorithms.

MNIST ‘0− 3’ ‘4− 5’ ‘6− 7’ ‘8− 10’
MultiBoost `1 99.8% 0.2% 0% 0%

MultiBoost group 4.5% 48.8% 40.9% 5.8%
MultiBoostgroupFAST 10.1% 69.9% 19.7% 0.3%

ABCDETC ‘0− 15’ ‘16− 30’ ‘31− 45’ ‘46− 62’
MultiBoost `1 99.8% 0.2% 0% 0%

MultiBoost group 0% 81.3% 18.7% 0%
MultiBoostgroupFAST 0% 65.7% 33.5% 0.7%

Table 3: The distribution of shared weak classifiers. For example, ‘8−10’ indicates
that the weak classifier is being shared among 8 to 10 classes. The table illustrates
the feature sharing property of our algorithms, i.e., one weak classifier is being shared
among multiple classes.

our approach on the 15-scene data set used in [17]. The set
consists of 9 outdoor scenes and 6 indoor scenes. There are
4, 485 images in total. For each run, the available data are
randomly split into a training set and a test set based on pub-
lished protocols. This is repeated 5 times and the average
accuracy is reported. In each train/test split, a visual code-
book is generated using only training images. Both train-
ing and test images are then transformed into histograms of
code words. We use CENTRIST [27] as our feature descrip-
tors. 200 visual code words are built using the histogram
intersection kernel (HIK), which has been shown to outper-
form k-means and k-median [27]. We represent each image
in a spatial hierarchy manner [3]. Each image consists of 31
sub-windows. An image is represented by the concatena-
tion of histograms of code words from all 31 sub-windows.
Hence, in total there are 6, 200 dimensional histogram.

Fig. 3 shows the average classification errors. We ob-
serve that both MultiBoost group and MultiBoost `1 [23]

methods # features used accuracy (%)
SAMME† [30] 1000 70.9 (0.40)

JointBoost† [26] 1000 72.2 (0.70)
MultiBoost `1 [23] 1000 76.0 (0.48)
AdaBoost.SIP [29] 1000 75.7 (0.10)

AdaBoost.ECC [16] 1000 76.5 (0.67)
AdaBoost.MH [21] 1000 77.6 (0.59)

MultiBoost group (ours) 1000 77.8 (0.77)
MultiBoostgroupFAST (ours) 1000 79.2 (0.82)

Linear SVM 6200 76.3 (0.88)
Nonlinear SVM (HIK) 6200 81.4 (0.60)

Table 4: Recognition rate of various algorithms on Scene15 data sets. All experi-
ments are run 5 times. The average accuracy mean and standard deviation (in per-
centage) are reported. Results marked by † were reported in [29].

converge quickly in the beginning. However, our ap-
proach has a better overall convergence rate. We also ob-
serve that both of our approaches, (MultiBoost group and
MultiBoostgroupFAST), have the lowest test error compared to
other algorithms evaluated. We also apply a multi-class
SVM to the above data set using the LIBSVM package [6]
and report the recognition results in Table 4. SVM with
6, 200 features achieves an average accuracy of 76.30%
(linear) and 81.47% (non-linear). Our results indicate that
both proposed approaches achieve a comparable accuracy
to non-linear SVM while requiring less number of features
(77.8% accuracy for MultiBoost group with 1000 features
and 79.2% accuracy for MultiBoostgroupFAST).

Traffic sign recognition We evaluate our approach on
the recent German traffic sign recognition benchmark3.

3http://benchmark.ini.rub.de/

2134

10 100 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

features (log scale)

T
es
t
er
ro
r

Scene recognition (15 classes)

Linear SVM (6200)
Ada.ECC (954)
Ada.MH (622)
MBoost �1 (1000+)
MBoost-Group (420)
MBoost-Group fast (532)

Figure 3: Performance of different classifiers on the scene recognition data set. We
also report the number of features required to achieve similar results to linear multi-
class SVM. Both of our methods (MultiBoost group and MultiBoostgroup

FAST) outper-
form other evaluated boosting algorithms.

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

features (log scale)

T
es
t
er
ro
r

Traffic sign recognition (43 classes)

Linear SVM (6308)
Ada.ECC (500+)
Ada.MH (500+)
MBoost ℓ1 (500+)
Group (166)
Group fast (197)

Figure 4: Performance of different classifiers on traffic sign recognition data sets.
We also report the number of features needed to achieve a similar accuracy to the
linear SVM. Both of our methods outperform other multi-class methods in terms of
the test error.

Data sets consist of 43 classes with more than 50, 000 im-
ages in total. We randomly select 100 samples from each
class to train our classifier. We use the provided test set to
evaluate the performance of our classifiers (12, 569 images).
All training images are scaled to 40 × 40 pixels using bi-
linear interpolation. Three different types of pre-computed
HOG features are provided (6, 052 features). We combine
all three types together. We also make use of histogram of
hue values (256 bins). Hence, there is a total of 6, 308 fea-
tures. The results of different classifiers are shown in Fig. 4.
Our proposed classifier outperforms other evaluated classi-
fiers. As a baseline, we train a multi-class SVM using LIB-
SVM [6]. SVM achieves 93.05% (using 6, 308 features)
while our classifier achieves 95.62% for MultiBoost group

and 95.42% for MultiBoostgroupFAST with a much smaller set of
features (500 features). Note that an overfitting behavior is
observed for MultiBoost `1 .

4. Conclusion
We have proposed a new feature-sharing multi-class

boosting method. The proposed boosting is based on the
primal-dual view of the group sparsity regularized opti-
mization. We derive the Lagrange dual problems and us-
ing column generation to implement the totally corrective
boosting. Extensive experiments show the excellence of the
proposed algorithm. We plan to extend our framework to a
hierarchical classification model where objects in the same

category, e.g., buses and trucks, can share visual appear-
ance. We will also explore the possibility of applying the
proposed framework to real-time object detection [20, 25].

Acknowledgement This work is supported in part
by the Australian Research Council Linkage Project
LP100100791.

References
[1] The mosek optimization software, version 6.0, 2011. http://www.mosek.

com.
[2] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary:

A unifying approach for margin classifiers. J. Mach. Learn. Res., 1:113–141,
2001.

[3] A. Bosch, A. Zisserman, and X. Munoz. Scene classification using a hybrid
generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell.,
30(4):712 – 727, 2008.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations & Trends in Mach. Learn., 3(1), 2011.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Trans. Intell. Sys. & Tech., 2(3), 2011.

[7] O. Chapelle and S. S. Keerthi. Multi-class feature selection with support vector
machines. In Proc. American Stat. Assoc., 2008.

[8] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernel-based vector mchines. J. Mach. Learn. Res., 2:265–292, 2001.

[9] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting
via column generation. Mach. Learn., 46(1-3):225–254, 2002.

[10] T. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. J. Artificial Intell. Res., 2:263–286, 1995.

[11] J. Duchi and Y. Singer. Boosting with structural sparsity. In Proc. Int. Conf.
Mach. Learn., 2009.

[12] Y. Freund. An adaptive version of the boost by majority algorithm. Mach.
Learn., 43(3):293–318, 2004.

[13] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
Proc. Int. Conf. Mach. Learn., 1996.

[14] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comp. & Sys. Sciences, 55:119–139,
1997.

[15] J. Fürnkranz. Round robin classification. J. Mach. Learn. Res., 2:721–747,
2002.

[16] V. Guruswami and A. Sahai. Multiclass learning, boosting, and error correcting
codes. In Proc. Annual Conf. Learn. Theory, pages 145–155, 1999.

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 2006.

[18] L. Li. Multiclass boosting with repartitioning. In Proc. Int. Conf. Mach. Learn.,
pages 569–576, 2006.

[19] S. Z. Li and Z. Zhang. FloatBoost learning and statistical face detection. IEEE
Trans. Pattern Anal. Mach. Intell., 26(9):1112–1123, 2004.

[20] S. Paisitkriangkrai, C. Shen, and J. Zhang. Fast pedestrian detection using
a cascade of boosted covariance features. IEEE Trans. Circuits Syst. Video
Technol., 18(8):1140–1151, 2008.

[21] R. Schapire and Y. Singer. Improved boosting algorithms using confidence-
rated prediction. Mach. Learn., 37(3):297–336, 1999.

[22] R. E. Schapire. Using output codes to boost multiclass learning problems. In
Proc. Int. Conf. Mach. Learn., 1997.

[23] C. Shen and Z. Hao. A direct formulation for totally-corrective multi-class
boosting. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011.

[24] C. Shen and H. Li. On the dual formulation of boosting algorithms. IEEE
Trans. Pattern Anal. Mach. Intell., 2010.

[25] C. Shen, S. Paisitkriangkrai, and J. Zhang. Face detection from few training
examples. In Proc. IEEE Int. Conf. Image Process., 2008.

[26] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for
multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach.
Intell., 29(5):854–869, 2007.

[27] J. Wu and J. M. Rehg. CENTRIST: A visual descriptor for scene categorization.
IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1489–1501, 2011.

[28] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class
classification by pairwise coupling. J. Mach. Learn. Res., 5:975 – 1005, 2004.

[29] B. Zhang, G. Ye, Y. Wang, J. Xu, and G. Herman. Finding shareable informative
patterns and optimal coding matrix for multiclass boosting. In Proc. IEEE Int.
Conf. Comp. Vis., 2009.

[30] J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class adaboost. Statistics & its
interface, 2:349–360, 2009.

2135

